

Predicting passenger numbers using machine learning

David Skålid Amundsen

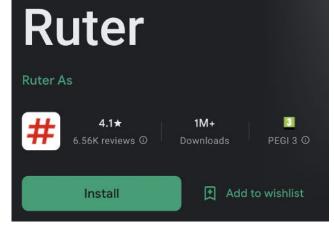


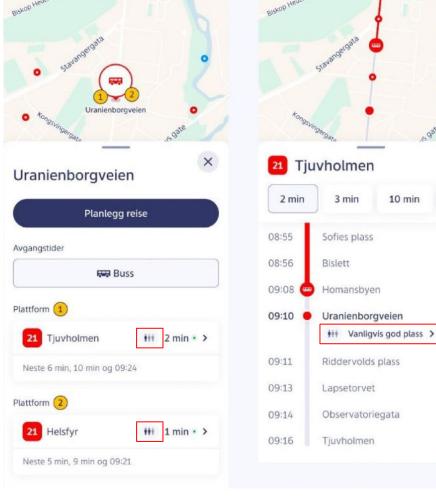
Ruter – Mobility in Oslo/Viken 4+

Plan your trip and buy tickets Ruter As

#1 in Travel ★★★★ 4.3 • 73.1K Ratings

Free





5 gate

×

14:55

Sensors count boarding and alighting

- Sensors count boarding and alighting passengers
- Can calculate number of people that was on-board

Ruter uses machine learning to predict passenger numbers

- Predict # people onboard
- Use the past three weeks of data
- The model is XGBoost
- Predict for the next three days
- Train and predict every day
- Combined with vehicle capacity
 - Free capacity on vehicle

	st
KGP	00-
X	

Performance quality

3%

Predictions are good enough for production

Root mean squared error (RMSE): 5 passengers

Load

100

80

60

40

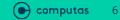
ok

good

bad

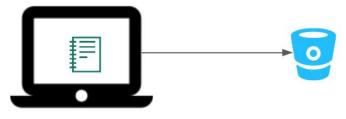
13%

Bringing this model into production



First attempt: Provide csv-files to other teams

- Daily model training on local machine
- Upload artifacts to git repository

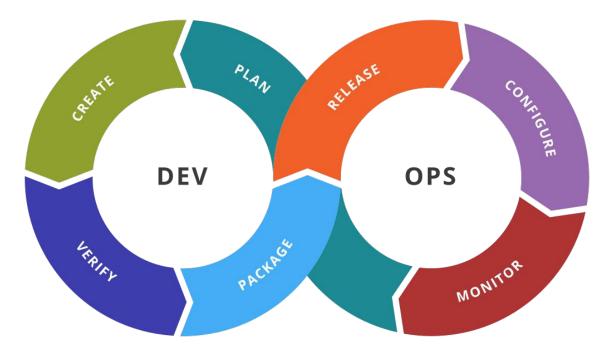


model_2020-08-06.csv	model prediction for 2020-08-06	11 Aug 2020
model_2020-08-07.csv	model prediction for 2020-08-07	11 Aug 2020
model_2020-08-08.csv	model prediction for 2020-08-08	11 Aug 2020
model_2020-08-09.csv	model prediction for 2020-08-09	11 Aug 2020
model_2020-08-10.csv	model prediction for 2020-08-10	11 Aug 2020
model_2020-08-11.csv	model prediction for 2020-08-11	11 Aug 2020
model_2020-08-12.csv	model prediction for 2020-08-12	18 Aug 2020
model_2020-08-13.csv	model prediction for 2020-08-13	18 Aug 2020
model_2020-08-14.csv	model prediction for 2020-08-14	18 Aug 2020
model_2020-08-15.csv	model prediction for 2020-08-15	18 Aug 2020

First attempt was not successful. Why?

- Difficult for the machine learning team to
 - reproduce models
 - efficiently monitor models
 - keeping model up-to-date
- Difficult for other teams to
 - get the predictions
 - understand how to use the predictions
 - trust the predictions
- Need more robust methodology

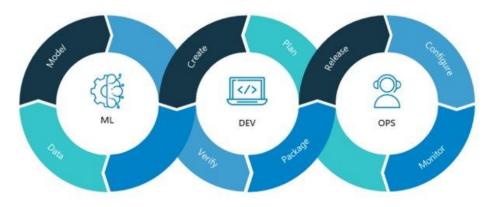
DevOps enables delivery of applications at high velocity



An ML engineering culture and practice that aims at unifying ML system development (Dev) and ML system operation (Ops)

MLOps extends DevOps principles to ML

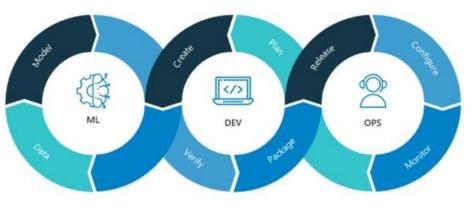
- Start with a quick simple model
- Tracked and reproducible experiments
- Automate as much as possible
 - Automated testing
 - Automated packaging
 - Automated training
- Monitor model and data



Neal Analytics

MLOps has many benefits

- Adapt to changes in the real world:
 - Actively monitor production model quality
 - Frequently retrain
 - Reusable components
- Shorter development cycles
 - => shorter time to market
- Increased
 - reliability
 - performance
 - scalability
 - return on investment for ML projects



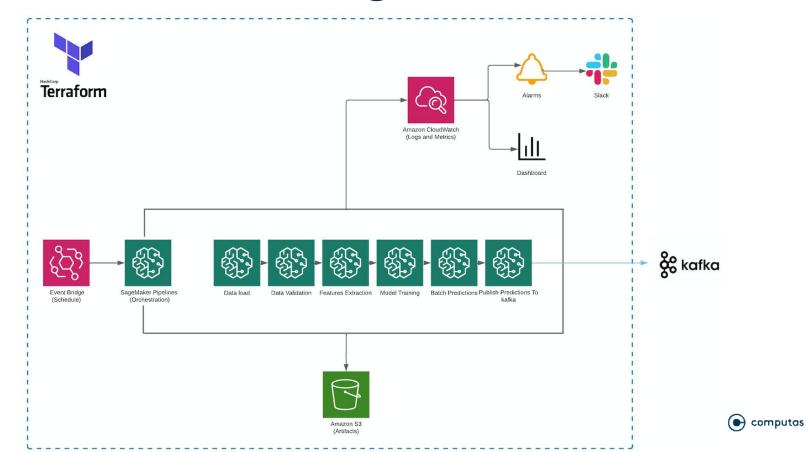
Slide by Sina Nek Akhtar, Google

Current production setup

Choosing ML(Ops) infrastructure framework

- Cloud Provider (Ruter's choice):
 - Managed, easy to get started
 - Vendor lock-in, expandability/features missing?
- Frameworks:
 - Flexible
 - Often manage infrastructure yourself, too many tools?
- Make everything from scratch
 - If nothing else fits your need
 - Manage infrastructure, reusability, scalability, maintainability

Ruter uses Amazon SageMaker

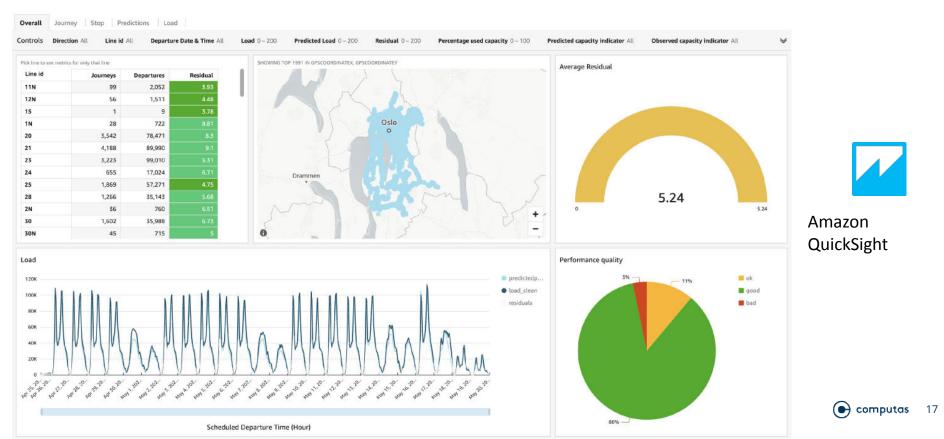


15

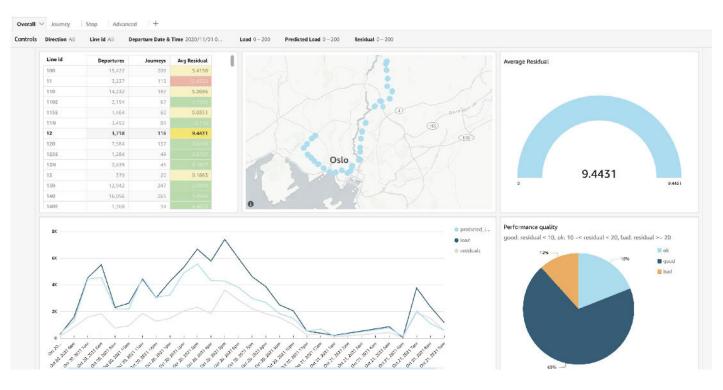
Each pipeline execution is reproducible

daily-20220525-125206					
Pipeline triggered automatically					
Graph Parameters Settings					
Parameters	Туре	Value			
TargetDate	Boolean	2022-05-25			
DbSyncDatetime	String	2022-05-25T07:00:24.320Z			
TriggerMdlMonitorLambda	String	True			
PipelineLambdaArn	String	FOR_INTERNAL_USE_ONLY			
BatchRunName	String	FOR_INTERNAL_USE_ONLY			
BucketPrefix	String	daily			
ExecutePublishPredictions	Boolean	true			

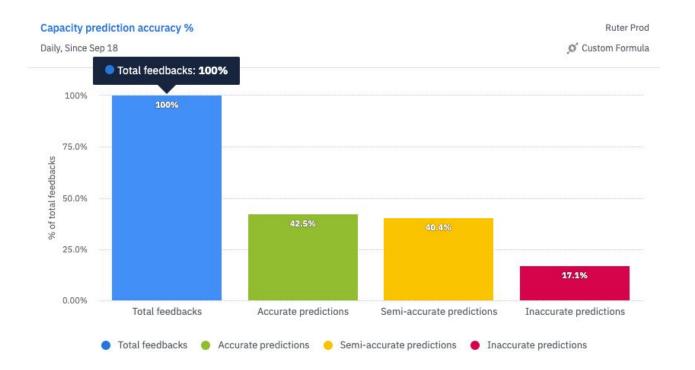
Model performance is monitored

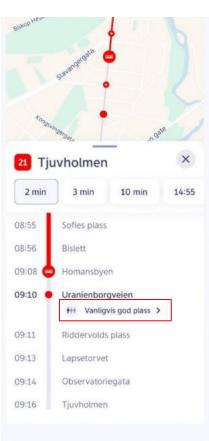


Model monitoring enables deep-dives



User feedback is also collected





Final thoughts

- Developing ML systems is different from traditional IT systems
 - Data + code -> models
 - MLOps: unify model development and operations
- MLOps frameworks help you productionise ML applications
 - Setting up an MLOps framework for production takes time
 - Choosing MLOps framework involves trade offs
- MLOps is worth it!
- Want to know more? Visit Computas' stand here at AI+.

Bonus slides

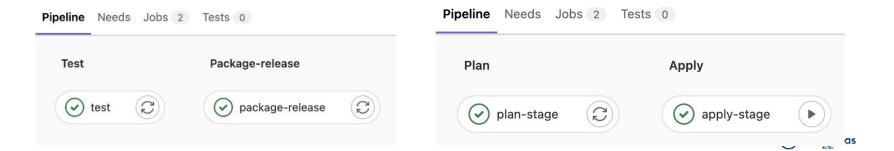
We use (Gitlab) CI for both containers and infrastructure

Pipeline steps

- Python
- Containerised
- Versioned
- Automatic testing, building

Infrastructure

- Terraform
- Three interacting environments
- Dev-infrastructure on demand



Where should ML knowledge be placed?

One ML team:

- Tasks:
 - Develop use-cases 0
 - Data analysis 0
 - Model development 0
 - Monitoring Ο
 - Infrastructure 0
- Consequences:
 - Tightly knit ML team 0
 - Isolated ML team 0
 - Friction with 0 product teams
 - Broader tech stack 0 in team

One ML team lends out resources:

One ML team

- ML resources "lent out" to product teams
- Reduced friction with other teams
- Follow product until the end user
- Does it work?

ML infra team + product teams:

- Central ML infrastructure team
- Data Scientists in product teams
- More data science work for data scientists

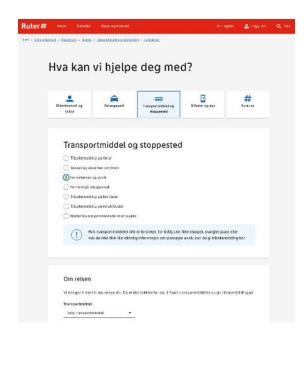
ML team per ML domain:

- Cross-enterprise ML applications
- **Organise ML teams** based on area, e.g.
 - anomaly detection 0
 - recommendation 0
 - image processing 0
- Separate ML infrastructure team?

Production ML at Ruter

- Classification of customer inquiries
 - More efficient customer service
- Predicting key stops
 - Better information on displays in buses
- Predicting crowdedness

70 S	kullerud	15:18	Kommende stopp Upcoming stops
3 min	St. Halvards plass		15:35 Langerudveien
2 min	Munkegata		15:34 Lille Langerud
1 min 🌘	Oslo bussterminal		6 min Eirik Raudes vei



Many improvements are possible

- Decouple training and predictions
 - Does the model need to be retrained every day?
- Add automatic integration tests
 - Unit tests are in place
 - Integration tests are manual
- Provide a better experience for model development and feature engineering
 - Focus has been on stable model in production
 - Take advantage of built-in experiment tracking tools?
- Use live data to improve estimates

