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Sensors count boarding and alighting

● Sensors count boarding and 
alighting passengers

● Can calculate number of 
people that was on-board
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Ruter uses machine learning to predict 
passenger numbers
● Predict # people onboard

● Use the past three weeks of data

● The model is XGBoost

● Predict for the next three days

● Train and predict every day

● Combined with vehicle capacity
○ Free capacity on vehicle
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Predictions are good enough for 
production
Root mean squared error (RMSE): 5 passengers
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Bringing this model 
into production
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First attempt: Provide csv-files to other 
teams
● Daily model training on local 

machine
● Upload artifacts to git repository
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First attempt was not successful. Why?

● Difficult for the machine learning team to
○ reproduce models

○ efficiently monitor models

○ keeping model up-to-date

● Difficult for other teams to
○ get the predictions

○ understand how to use the predictions

○ trust the predictions

● Need more robust methodology
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DevOps enables delivery of applications at 
high velocity
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MLOps

An ML engineering culture and practice that aims 

at unifying ML system development (Dev) and ML 

system operation (Ops)
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MLOps extends DevOps principles to ML 

● Start with a quick simple model

● Tracked and reproducible experiments

● Automate as much as possible

○ Automated testing

○ Automated packaging

○ Automated training

● Monitor model and data
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MLOps has many benefits

● Adapt to changes in the real world:
○ Actively monitor production model quality
○ Frequently retrain
○ Reusable components

● Shorter development cycles
○ => shorter time to market

● Increased
○ reliability
○ performance
○ scalability
○ return on investment for ML projects
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Current production 
setup
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Choosing ML(Ops) infrastructure framework

● Cloud Provider (Ruter’s choice):
○ Managed, easy to get started
○ Vendor lock-in, expandability/features 

missing?

● Frameworks:
○ Flexible
○ Often manage infrastructure yourself, too 

many tools?

● Make everything from scratch
○ If nothing else fits your need
○ Manage infrastructure, reusability, 

scalability, maintainability
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Ruter uses Amazon SageMaker



Each pipeline execution is reproducible
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Model performance is monitored
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Amazon 
QuickSight



Model monitoring enables deep-dives
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User feedback is also collected
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Final thoughts

● Developing ML systems is different from traditional IT systems
○ Data + code -> models

○ MLOps: unify model development and operations

● MLOps frameworks help you productionise ML applications
○ Setting up an MLOps framework for production takes time

○ Choosing MLOps framework involves trade offs

● MLOps is worth it!

● Want to know more? Visit Computas’ stand here at AI+.
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Bonus slides
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We use (Gitlab) CI for both containers and 
infrastructure

Pipeline steps
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● Python
● Containerised
● Versioned
● Automatic testing, building

Infrastructure
● Terraform
● Three interacting 

environments
● Dev-infrastructure on demand



Where should ML knowledge be placed?
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One ML team:
● Tasks:

○ Develop use-cases
○ Data analysis
○ Model development
○ Monitoring
○ Infrastructure

● Consequences:
○ Tightly knit ML team
○ Isolated ML team
○ Friction with 

product teams
○ Broader tech stack 

in team

One ML team lends out 
resources:

● One ML team
● ML resources “lent 

out” to product 
teams

● Reduced friction 
with other teams

● Follow product 
until the end user

● Does it work?

ML infra team + 
product teams:

● Central ML 
infrastructure 
team

● Data Scientists 
in product 
teams

● More data 
science work 
for data 
scientists

ML team per ML domain:
● Cross-enterprise ML 

applications
● Organise ML teams 

based on area, e.g.
○ anomaly detection
○ recommendation
○ image processing

● Separate ML 
infrastructure team?



Production ML at Ruter

● Classification of customer inquiries
○ More efficient customer service

● Predicting key stops
○ Better information on displays in buses

● Predicting crowdedness

24



Many improvements are possible

● Decouple training and predictions
○ Does the model need to be retrained every day?

● Add automatic integration tests
○ Unit tests are in place
○ Integration tests are manual

● Provide a better experience for model development and feature 
engineering

○ Focus has been on stable model in production
○ Take advantage of built-in experiment tracking tools?

● Use live data to improve estimates
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