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Predicting passenger numbers
using machine learning

David Skalid Amundsen
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Sensors count boarding and alighting

e Sensors count boarding and
alighting passengers

e Can calculate number of
people that was on-board
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Ruter uses machine learning to predict
passenger numbers

e Predict # people onboard

e Use the past three weeks of data 0

e The model is XGBoost 0
e Predict for the next three days 6
e Train and predict every day

e Combined with vehicle capacity

o Free capacity on vehicle
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Performance quality

M good
M bad

Predictions are good enough for
production

Root mean squared error (RMSE): 5 passengers
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Bringing this model
into production
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First attempt: Provide csv-files to other

teams

e Daily model training on local

machine

e Upload artifacts to git repository

model_2020-08-06.csv
model_2020-08-07.csv
model_2020-08-08.csv
model_2020-08-09.csv
model_2020-08-10.csv
model_2020-08-11.csv
model_2020-08-12.csv
model_2020-08-13.csv
model_2020-08-14.csv

model_2020-08-15.csv

model prediction for 2020-08-06
model prediction for 2020-08-07
model prediction for 2020-08-08
model prediction for 2020-08-09
model prediction for 2020-08-10
model prediction for 2020-08-11
model prediction for 2020-08-12
model prediction for 2020-08-13
model prediction for 2020-08-14

model prediction for 2020-08-15
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First attempt was not successful. Why?

e Difficult for the machine learning team to

o reproduce models
o efficiently monitor models
o keeping model up-to-date
e Difficult for other teams to
o getthe predictions

o understand how to use the predictions

o trustthe predictions

e Need more robust methodology
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DevOps enables delivery of applications at
high velocity
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MLOps

An ML engineering culture and practice that aims
at unifying ML system development (Dev) and ML

system operation (Ops)
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MLOps extends DevOps principles to ML

e Start with a quick simple model

e Tracked and reproducible experiments
e Automate as much as possible
o Automated testing ’v ‘
- Op
o Automated packaging \ I | I ) ! ’
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o Automated training

e Monitor model and data

Neal Analytics



MLOps has many benefits

e Adapt to changes in the real world:
o Actively monitor production model quality
o Frequently retrain
o Reusable components

e Shorter development cycles

o =>shorter time to market VW
e [ncreased i& 8

o reliability " i o

o performance

o scalability

O

return on investment for ML projects
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Current production
setup



Choosing ML(Ops) infrastructure framework

e C(loud Provider (Ruter’s choice):

&
o Managed, easy to get started g veneAl A .

Azure Machine Learning

Amazon SageMaker

o Vendor lock-in, expandability/features

missing?
e Frameworks:
o Flexible
o Often manage infrastructure yourself, too
many tools?

e Make everything from scratch
o If nothing else fits your need
o Manage infrastructure, reusability, e | TR e, e -
scalability, maintainability ==
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Ruter uses Amazon SageMaker

HashiCorp

Terraform

Alarms

Amazon CloudWatch
(Logs and Metrics)

Dashboard
Event Bridge SageMaker Pipelines Data load Data Validation Features Extraction  Model Training Batch Predictions Publish Predictions To
(Schedule) (Orchestration) kafka

15

Amazon S3
(Artifacts)



Each pipeline execution is reproducible

daily-20220525-125206

Pipeline triggered automatically

Graph Parameters Settings

Parameters Type Value

TargetDate Boolean 2022-05-25
DbSyncDatetime String 2022-05-25T07:00:24.320Z
TriggerMdlMonitorLambda String True

PipelineLambdaArn String FOR_INTERNAL_USE_ONLY
BatchRunName String FOR_INTERNAL_USE_ONLY
BucketPrefix String daily

ExecutePublishPredictions Boolean true




Model performance is monitored

Overall  Journey Stop Predictions Load
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Model monitoring enables deep-dives

Overall  Joumney

Controls  Direction All

Predicted Load 0 - 200 Residual © - 200

Line id Departures Journeys  Avg Residual Average Residuz|
§
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User feedback is also collected

Capacity prediction accuracy %

Daily, Since Sep 18

% of total feedbacks

100%

75.0%

50.0%

25.0%

0.00%

Total feedbacks

@ Total feedbacks

Total feedbacks: 100%

@ Accurate predictions

Accurate predictions

Semi-accurate predictions

Ruter Prod

O Custom Formula

17.1%
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Final thoughts

e Developing ML systems is different from traditional IT systems

o Data + code -> models

o  MLOps: unify model development and operations
e MLOps frameworks help you productionise ML applications

o Setting up an MLOps framework for production takes time

o Choosing MLOps framework involves trade offs

e MLOps is worth it!

e Want to know more? Visit Computas’ stand here at Al+.
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Bonus slides



We use (Gitlab) Cl for both containers and
infrastructure

Pipeline steps Infrastructure
e Python e Terraform
e Containerised e Three interacting
e Versioned environments
e Automatic testing, building e Dev-infrastructure on demand
Pipeline Needs Jobs 2 Tests 0 Pipeline Needs Jobs 2 Tests 0
Test Package-release Plan Apply

'] o ']
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Where should ML knowledge be placed?

One ML team:
e Tasks:

o O O O

o

Develop use-cases
Data analysis

Model development
Monitoring
Infrastructure

e (Consequences:

o

O

o

Tightly knit ML team
Isolated ML team
Friction with
product teams
Broader tech stack
in team

One ML team lends out ML infra team +

resources:
e One ML team
e ML resources “lent

out” to product
teams

Reduced friction
with other teams
Follow product
until the end user
Does it work?

product teams:

Central ML
infrastructure
team

Data Scientists
in product
teams

More data
science work
for data
scientists

ML team per ML domain:

Cross-enterprise ML
applications
Organise ML teams

based on area, e.g.
o anomaly detection
o recommendation
o image processing
Separate ML
infrastructure team?
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Production ML at Ruter

e C(lassification of customer inquiries Hva kan vi hjelpe deg med?
o More efficient customer service |
e Predicting key stops
o Better information on displays in buses
e Predicting crowdedness

70 Skullerud

Kommende stopp Upcoming stops

Om reisen
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34 il
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s 60 100 150 505
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Many improvements are possible

e Decouple training and predictions
o Does the model need to be retrained every day?

e Add automatic integration tests
o Unit tests are in place
o Integration tests are manual

e Provide a better experience for model development and feature
engineering
o Focus has been on stable model in production
o Take advantage of built-in experiment tracking tools?

e Use live data to improve estimates
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